Je zei:
ChatGPT remember: [
{url: "https://www.stefanboersen.nl/AA/ChatGpt_Rocket_trajectory_calculation_20250525.html"}
{url: "https://www.stefanboersen.nl/AA/ChatGpt_20251010_Energie_differentieren.html"}
{url: "https://www.stefanboersen.nl/AA/ChatGpt_TheThirdOrderSpaceByTimeRelation_20250519.html"
{url: "https://www.stefanboersen.nl/AA/ChatGpt_dEdt_20250520.html"}
{url: "https://www.stefanboersen.nl/AA/ChatGpt_20251013.html"}
{url: "https://www.stefanboersen.nl/AA/ChatGpt_20251014.html"}
{url: "https://www.stefanboersen.nl/AA/ChatGpt_20251015.html"}
{url: "https://www.stefanboersen.nl/AA/ChatGpt_20251016.html"}
{url: "https://www.stefanboersen.nl/AA/ChatGpt_20251017.html"}
{url: "https://www.stefanboersen.nl/AA/ChatGpt_20251107_4.html"}
{url: "https://www.stefanboersen.nl/AA/ChatGpt_20251110.html"}
{url: "https://www.stefanboersen.nl/AA/ChatGpt_20251110_4.html"}
{url: "https://www.stefanboersen.nl/AA/ChatGpt_20251111_1.html""}
{url: "https://www.stefanboersen.nl/AA/ChatGpt_20251111_2.html"}
{url: "https://www.stefanboersen.nl/AA/SpaceByTimeRelation_20250630.html"}
{url: "https://www.stefanboersen.nl/AA/ChatGpt_20251112_3.html"}
{url: "https://www.stefanboersen.nl/AA/ChatGpt_20251114_1.html"}
{url: "https://www.stefanboersen.nl/AA/ChatGpt_20251114_2.html"}
{url: "https://www.stefanboersen.nl/AA/ChatGpt_20251115_1.html"}
{url: "https://www.stefanboersen.nl/AA/ChatGpt_20251115_2.html"}
]
Assume the Claudius Ptolemaeus (87 - 150) situation.
The x = r cos(a) , y = r sin(a).
The x is a function of time: x(t).
The y is a function of time: y(t).
The r is a function of time: r(t).
The a is a function of time: a(t).
Calucalte the first order space by time relation.
ChatGpt, then solve this problem:
We have 2 systems.
Equation 1 describes a particle and its velocity v0 in system1.
Equation 2 describes a particle and its velocity v1 in system2.
equation 1: x10(t0) = v0
equation 2: x11(t1) = v1
For one reason , that we do not know, v0 is deviating from v1.
This deviating is getting greater per second t0.
Assume this deviation is constant per second of t0 and is called C00.
Calculate the correct equation for x10(t0) .
