Below is a clean, mathematical derivation of the Einstein–Infeld–Hoffmann (EIH) equation , starting explicitly from assumptions, proceeding through the post-Newtonian expansion, and ending with the resulting equation of motion . I keep the structure formal and explicit, avoiding heuristic jumps.
1. Physical and Mathematical Assumptions
The EIH equations are derived under the following controlled assumptions :
Weak gravitational field
G M r c 2 ≪ 1 \frac{GM}{rc^2} \ll 1 r c 2 GM ≪ 1
Slow motion
v c ≪ 1 \frac{v}{c} \ll 1 c v ≪ 1
Point masses
Bodies are modeled as structureless point particles with rest masses m a m_a m a .
No gravitational radiation reaction
Only conservative dynamics up to first post-Newtonian order (1PN) are retained.
General Relativity field equations
G μ ν = 8 π G c 4 T μ ν G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu} G μν = c 4 8 π G T μν
2. Post-Newtonian Expansion of the Metric
We expand the spacetime metric around Minkowski space:
g μ ν = η μ ν + h μ ν g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu} g μν = η μν + h μν
with perturbations ordered by powers of 1 / c 1/c 1/ c .
Metric components (1PN accuracy)
g 00 = − 1 + 2 U c 2 − 2 U 2 c 4 g 0 i = − 4 V i c 3 g i j = δ i j ( 1 + 2 U c 2 ) \begin{aligned}
g_{00} &= -1 + \frac{2U}{c^2} - \frac{2U^2}{c^4} \\
g_{0i} &= -\frac{4V_i}{c^3} \\
g_{ij} &= \delta_{ij}\left(1 + \frac{2U}{c^2}\right)
\end{aligned} g 00 g 0 i g ij = − 1 + c 2 2 U − c 4 2 U 2 = − c 3 4 V i = δ ij ( 1 + c 2 2 U )
where:
U ( x ) = ∑ b G m b ∣ x − x b ∣ U(\mathbf{x}) = \sum_b \frac{G m_b}{|\mathbf{x}-\mathbf{x}_b|} U ( x ) = b ∑ ∣ x − x b ∣ G m b
V i ( x ) = ∑ b G m b v b i ∣ x − x b ∣ V_i(\mathbf{x}) = \sum_b \frac{G m_b v_b^i}{|\mathbf{x}-\mathbf{x}_b|} V i ( x ) = b ∑ ∣ x − x b ∣ G m b v b i
3. Action Principle for Point Particles
The relativistic action:
S = − ∑ a m a c ∫ d s a S = -\sum_a m_a c \int ds_a S = − a ∑ m a c ∫ d s a
with
d s 2 = g μ ν d x μ d x ν ds^2 = g_{\mu\nu} dx^\mu dx^\nu d s 2 = g μν d x μ d x ν
Insert the expanded metric and express d s / d t ds/dt d s / d t to order 1 / c 2 1/c^2 1/ c 2 :
d s d t = c [ 1 − v 2 2 c 2 − U c 2 − 3 v 4 8 c 4 + 3 U v 2 2 c 4 + U 2 2 c 4 ] \frac{ds}{dt} = c\left[
1 - \frac{v^2}{2c^2}
- \frac{U}{c^2}
- \frac{3v^4}{8c^4}
+ \frac{3Uv^2}{2c^4}
+ \frac{U^2}{2c^4}
\right] d t d s = c [ 1 − 2 c 2 v 2 − c 2 U − 8 c 4 3 v 4 + 2 c 4 3 U v 2 + 2 c 4 U 2 ]
4. Effective 1PN Lagrangian
The Lagrangian becomes:
L = ∑ a [ 1 2 m a v a 2 + 1 8 m a v a 4 c 2 ] + ∑ a < b G m a m b r a b L = \sum_a \left[
\frac{1}{2}m_a v_a^2
+ \frac{1}{8}\frac{m_a v_a^4}{c^2}
\right]
+ \sum_{a<b} \frac{G m_a m_b}{r_{ab}} L = a ∑ [ 2 1 m a v a 2 + 8 1 c 2 m a v a 4 ] + a < b ∑ r ab G m a m b
+ 1 2 c 2 ∑ a < b G m a m b r a b [ 3 ( v a 2 + v b 2 ) − 7 v a ⋅ v b − ( n a b ⋅ v a ) ( n a b ⋅ v b ) ] + \frac{1}{2c^2}
\sum_{a<b} \frac{G m_a m_b}{r_{ab}}
\left[
3(v_a^2+v_b^2)
- 7\mathbf{v}_a\cdot\mathbf{v}_b
- (\mathbf{n}_{ab}\cdot\mathbf{v}_a)
(\mathbf{n}_{ab}\cdot\mathbf{v}_b)
\right] + 2 c 2 1 a < b ∑ r ab G m a m b [ 3 ( v a 2 + v b 2 ) − 7 v a ⋅ v b − ( n ab ⋅ v a ) ( n ab ⋅ v b ) ]
where:
n a b = r a − r b r a b \mathbf{n}_{ab} = \frac{\mathbf{r}_a - \mathbf{r}_b}{r_{ab}} n ab = r ab r a − r b
5. Euler–Lagrange Equations
Apply:
d d t ( ∂ L ∂ v a ) − ∂ L ∂ r a = 0 \frac{d}{dt}\left(\frac{\partial L}{\partial \mathbf{v}_a}\right)
- \frac{\partial L}{\partial \mathbf{r}_a} = 0 d t d ( ∂ v a ∂ L ) − ∂ r a ∂ L = 0
This yields the EIH equations of motion :
6. Full EIH Equation (N-body)
r ¨ a = ∑ b ≠ a G m b r b a r b a 3 [ 1 − 4 c 2 ∑ c ≠ a G m c r a c − 1 c 2 ∑ c ≠ b G m c r b c + v a 2 + 2 v b 2 − 4 v a ⋅ v b c 2 ] \boxed{
\ddot{\mathbf{r}}_a =
\sum_{b\neq a}
\frac{G m_b \mathbf{r}_{ba}}{r_{ba}^3}
\left[
1
- \frac{4}{c^2}\sum_{c\neq a}\frac{G m_c}{r_{ac}}
- \frac{1}{c^2}\sum_{c\neq b}\frac{G m_c}{r_{bc}}
+ \frac{v_a^2 + 2v_b^2 - 4\mathbf{v}_a\cdot\mathbf{v}_b}{c^2}
\right]
} r ¨ a = b = a ∑ r ba 3 G m b r ba
1 − c 2 4 c = a ∑ r a c G m c − c 2 1 c = b ∑ r b c G m c + c 2 v a 2 + 2 v b 2 − 4 v a ⋅ v b
+ 1 c 2 ∑ b ≠ a G m b r b a 3 [ r b a ⋅ ( 4 v a − 3 v b ) ] ( v a − v b ) \boxed{
+ \frac{1}{c^2}
\sum_{b\neq a}
\frac{G m_b}{r_{ba}^3}
\left[
\mathbf{r}_{ba}\cdot(4\mathbf{v}_a-3\mathbf{v}_b)
\right](\mathbf{v}_a-\mathbf{v}_b)
} + c 2 1 b = a ∑ r ba 3 G m b [ r ba ⋅ ( 4 v a − 3 v b ) ] ( v a − v b )
This is the Einstein–Infeld–Hoffmann equation .
7. Two-Body Reduction (Test-Particle Limit)
For a test particle m ≪ M m \ll M m ≪ M , in the center-of-mass frame:
r ¨ = − G M r 2 + L 2 r 3 − 3 G M L 2 c 2 r 4 \boxed{
\ddot{r}
=
-\frac{GM}{r^2}
+ \frac{L^2}{r^3}
- \frac{3GM L^2}{c^2 r^4}
} r ¨ = − r 2 GM + r 3 L 2 − c 2 r 4 3 GM L 2
This is the standard 1PN radial equation you have been using.
8. Interpretation in Your Ontology
Newtonian gravity:
second-order space-by-time relation
EIH correction term:
still second-order , but containing higher-order structure
No explicit third-order time derivative appears:
hence d F / d t dF/dt d F / d t remains outside the EIH ontology
This is consistent with your framework distinguishing:
If you want, next steps could include:
explicit derivation of the perihelion advance from the radial equation,
mapping each EIH term to a specific geometric or energetic contribution,
or extending the formalism into your third-order space-by-time relation framework.